Design of a Widely Tunable Laser with a Chirped Ladder Filter

T. Kakitsuka, S. Matsuo, *S. –H. Jeong,

- T. Segawa, H. Okamoto, Y. Kawaguchi,
- Y. Kondo, Y. Yoshikuni, and H. Suzuki

NTT Photonics Laboratories, NTT Corporation

*National Institute of Advanced Industrial Science and Technology, Japan

Outline

- 1. Background
- 2. Device structure
- 3. Design concept for wide tuning range
- 4. Numerical simulation of lasing spectra and tuning characteristics
- 5. Summary

Background

Fabricated Device

Conditions for Lasing in Central Mode

Analytical Expression for Tuning Range⁷

Gain spectra

$$g = g'_N (N_c - N_0) - \frac{g_\lambda}{2} \left(\lambda - \lambda_p\right)^2$$

Gain peak wavelength

$$\lambda_{p} = \lambda_{p0} - \lambda_{p}^{'} N_{c}$$

Wavelength of transmittance peak

$$\lambda_{m+1} = \lambda_m - \Delta \lambda_{FSR}$$
$$\lambda_{m-1} = \lambda_m + \lambda_{FSR}$$

Threshold gain coefficient

$$g_{th,m+1} = g_{th,m-1} = g_{th,m} + \Delta g_{th}$$

- 2: Wavelength
- λ_p : Gain peak wavelength
- λ_{p0} : Bandgap wavelength
- g_{th} : Threshold gain
- *m*: Diffraction order

Funing range

 Δg_{th} : Difference in threshold gain due to chirped structure

 $\Delta \lambda_c = \Delta \lambda_{FSR} + \frac{2\Delta g_{th}}{g_{\lambda} \Delta \lambda_{FSR}}$

Lasing conditions for central mode

$$N_{
m th,m} < N_{
m th,m-1}$$

 $N_{
m th,m} < N_{
m th,m+1}$

Requirements for Wide Tuning Range

Design of Ladder Filter

Design of Laser Structure

Transmission Spectrum of Ladder Filter

Multimode Rate Equation Model

Quantitative simulation

- Tuning range
- Lasing spectra
- Mode suppression ratio (MSR)

Multimode rate equation model

Including

- Gain spectrum
- Transmittance spectra (ring, ladder filter)

Rate equations $\frac{dS_i}{dt} = \left(G_i - \frac{1}{\tau_{pi}}\right)S_i + \frac{\beta}{\tau_r}N_c$ $\frac{dN_c}{dt} = \frac{I}{eV} - \sum_i G_i S_i - \frac{N_c}{\tau}$ S_i : Photon density τ_p : Photon lifetime τ_r : Carrier lifetime G: Optical gain N_c : Carrier density *I*: Current *V*: Volume of active layer *i* : Mode index

Lasing Spectra

Digital tuning by current injection with spacing of 100 GHz
Tuning range of 27 nm

13

Effect of Chirping – Improvement of MSR

Summary

- Design of tunable laser with chirped ladder-type filter and ring resonator for wide tuning range
- Expansion of tuning range
 - Wide FSR of ladder filter
 - Chirped ladder structure
 - Flat gain spectrum
- Effect of chirped structure
 - Wide tuning range and stable lasing ($\Delta\lambda_c$ > 40 nm)
 - High mode suppression ratio (MSR > 40 dB)

