

SEEKING A NEW HORIZON

## Modeling of SOA-based high speed alloptical wavelength conversion with optical filter assistance

Jianji Dong<sup>1,2</sup>, Songnian Fu<sup>1</sup>, P. Shum<sup>1</sup>, Xinliang Zhang<sup>2</sup>, Dexiu Huang<sup>2</sup>

(1) Network Technology Research Centre, Nanyang Technological University, 637553, Singapore.

(2) Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.



Network Technology Research Centre Email: d-ntrc@ntu.edu.sg / URL: www.ntu.edu.sg/ntrc

# Outline

- 1. Introduction
- 2. Analytical solution derivation and modeling
- 3. Simulation Results & Discussion
- 4. Conclusions

Vetwork



# Introduction

#### Motivation:

SOA-based wavelength conversion schemes with blue-shifted filter assistance were presented (40G <sup>[1]</sup>/80G/160G/320G <sup>[2]</sup>), including inverted WC and non-inverted WC. The key point is to adjust the central wavelength of the filter with respect to probe carrier.

#### **Objective:**

to establish a uniform formula to explain wavelength conversion polarity evolution .



[1] M. L. Nielsen, *et al.* "Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering," *Electron. Lett.*, vol.39, pp. 1334 - 1335, 2003



[2] Y. Liu, *et al.* "Error-free 320 Gb/s SOA-based Wavelength Conversion using Optical Filtering," *OFC 2006*, PDP28.

W

MΛ

## **Analytical solution derivation**

M\_A

**Basic configuration** 

#### Modeling:

| The optical field of probe signal after SOA can be expressed as |     |
|-----------------------------------------------------------------|-----|
| $E_{probe}(t) = E_{in}g(t)\exp[i(\omega_0 t - \Phi(t))]$        | (1) |

the impulse response function of the OBF is obtained by

$$h(t) = \frac{B_0}{\sqrt{2\pi}} \exp[-\frac{1}{2}(B_0 t)^2] \exp(i\omega_f t)$$
(2)

W

 $\lambda_0 = \lambda_c + \Delta \lambda_{\rm det}$ 



(3)



The output filtered signal is a convolution

$$E_{out}(t) = E_{probe}(t) \otimes h(t) = \int E_{inv}(\tau)h(t-\tau)d\tau$$

$$=\frac{B_0}{\sqrt{2\pi}}\int_{-\infty}^{\infty}E_{in}g(\tau)\exp[i(\omega_0\tau-\Phi(\tau))]\exp[-\frac{1}{2}(B_0(t-\tau))^2]\exp[i\omega_f(t-\tau)]d\tau$$

 $E_{out}(t) = \lim_{\varepsilon \to 0} \frac{B_0 \varepsilon}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} E_{in} g(t+n\varepsilon) \exp[i(\omega_0(t+n\varepsilon) - \Phi(t+n\varepsilon))] \exp[-\frac{1}{2}(B_0 n\varepsilon)^2] \exp[-i\omega_f n\varepsilon]$ (4)

$$E_{out}(t) = \frac{B_0 \varepsilon E_{in}}{\sqrt{2\pi}} g(t) \exp[i(\omega_0 t - \Phi)] \operatorname{Re}(\varepsilon, t) + \frac{B_0 \varepsilon E_{in}}{\sqrt{2\pi}} \frac{dg(t)}{dt} \exp[i(\omega_0 t - \Phi)] \operatorname{Im}(\varepsilon, t)$$

$$\operatorname{Re}(\varepsilon, t) = \lim_{\varepsilon \to 0} \{1 + \sum_{n=1}^N 2 \cdot \exp[-\frac{1}{2} (B_0 n \varepsilon)^2] \cdot \cos[(\omega_f - \omega_0 + \frac{d\Phi}{dt}) n \varepsilon]\}\varepsilon$$

$$\operatorname{Im}(\varepsilon, t) = \lim_{\varepsilon \to 0} \{i \cdot \sum_{n=1}^N 2n\varepsilon \cdot \exp[-\frac{1}{2} (B_0 n \varepsilon)^2] \cdot \sin[(\omega_f - \omega_0 + \frac{d\Phi}{dt}) n \varepsilon]\}\varepsilon$$

the output optical power can be obtained

$$P_{out}(t) = |E_{out}(t)|^{2} = P_{in} \exp[-(4\ln 2)(\frac{v_{f} - v_{0} - \Delta v(t)}{B_{3dB}})^{2}][g^{2}(t) + g'(t)^{2}(2\ln 2\frac{v_{f} - v_{0} - \Delta v(t)}{\pi B_{3dB}^{2}})^{2}]$$

$$NANYANG \qquad \Delta v(t) = -\frac{1}{2\pi} \frac{d\Phi}{dt}$$
(5)

SEEKING A NEW HORIZON

## Error analysis of the formula



Detuning=0nm

Detuning=0.8nm

Comparison between FFT solution and analytical solution



#### **Error analysis of the formula**



Comparison between FFT solution and analytical solution

## **Simulation Results**

$$P_{out}(t) = |E_{out}(t)|^{2} = P_{in} \exp[-(4\ln 2)(\frac{v_{f} - v_{0} - \Delta v(t)}{B_{3dB}})^{2}][g^{2}(t) + g'(t)^{2}(2\ln 2\frac{v_{f} - v_{0} - \Delta v(t)}{\pi B_{3dB}^{2}})^{2}]$$

#### **Transient cross phase modulation**

**Cross gain modulation** 



The evolutions of the output filtered waveforms when the filter detuning varies from -60GHz to 60GHz





Discussion

- Inverted WC:
  - the gain recovery can be accelerated.
  - the filter central wavelength is close to probe wavelength.
- Non-inverted WC:
  - the filter central wavelength is detuned far to the probe wavelength.
  - some applications in all-optical logic gates, optical adders





#### **Experimental verification**



NANYANG<sup>S. Fu, J. Dong, et al, "Experimental demonstration of both inverted and non-inverted wavelength TECHNOLOGICAL conversion based on transient cross phase modulation of SOA," Opt. Express 14, 7587-7593 (2006), UNIVERSITY</sup>

| A | polarity     | blue shift/nm |             | red shift/nm |             |
|---|--------------|---------------|-------------|--------------|-------------|
|   |              | experiment    | calculation | experiment   | calculation |
|   | inverted     | 0.04-0.08     | 0.04-0.16   | 0.05-0.08    | 0.04-0.12   |
|   | non-inverted | 0.24-0.3      | 0.28-0.48   | 0.25-0.34    | 0.28-0.52   |

Table 1. The comparison between experiments and calculations based on Eq. (5).

Table 2. The parameters in experimental reports of high speed all-optical WC.

| opu | Ref<br>Number | Bit rate<br>/GHz | polarity     | Pulsewidth<br>/ps | Bandwidth<br>/nm | Detuning/nm<br>experiment | Detuning/nm<br>simulation |
|-----|---------------|------------------|--------------|-------------------|------------------|---------------------------|---------------------------|
| -   | [3]           | 40               | non-inverted | 7                 | 0.22             | 0.5                       | 0.48-0.64                 |
|     | [1]           | 160              | inverted     | 1.9               | 1.4              | 1.23                      | 1.04-1.52                 |
|     | [2]           | 320              | inverted     | 1                 | 2.7              | 2.5                       | 2.08-2.88                 |

[1] Y. Liu, E. Tangdiongga, Z. Li, IEEE J.Lightwave.Technol., 24, 230-236, 2006.

[2] Y. Liu, E. Tangdiongga, Z. Li, et al. OFC 2006, PDP28, 2006

[3] M. L. Nielsen, B. Lavigne, B. Dagens, et al. Electron. Lett., Vol.39, pp. 1334 - 1335, 2003.



---

### Conclusions

- 1. An analytical formula is deduced to investigate the TXPM-based WC evolution.
- 2. Both inverted and non-inverted WCs can be realized when the central wavelength of the optical bandpass filter is either blue-shifted or red-shifted with respect to the wavelength of the probe signal.
- 3. The simulation detuning values are in good agreement with those experimental results.

#### Acknowledgements

This work is partially supported by the project M47040039 of Agency for Science, Technology and Research, Singapore



SEEKING A NEW HORIZON

# Thank you !





Mobile

**Vetwork** 

