Simulation of interaction of the femtosecond laser pulses with chirped mirror

S. O. Yakushev¹, I. A. Sukhoivanov³, O.V. Shulika¹,<u>V.V. Lysak^{1,2},</u> S. I. Petrov¹ ¹Kharkov National University of Radio Electronics Kharkov, Ukraine ²Gwangju Institute of science and technology Gwangju, Republic of Korea ³University Guanajuato Salamanca, Mexico

Outline

Introduction
Model description
Result discussion
Conclusion

Chirped Mirrors and femtosecond generation

- Dispersion effect is one of the limiting factor of ultrafast generation
- Chirped mirrors permit to control the net intracavity dispersion
- The goal of design methods is to obtain structure for optimal dispersion compensation

Chirped mirrors and pulse compression

Dispersion compensation

Pulse compression in CM with GD oscillations

Pulse compression in CM with desired GD

broadened pulsecompressed pulse

Pulse compression stages

 compression in CM with GD oscillatons

 compression in CM with desired GD

Chirp compression

GD oscillations distort pulse profile

TOD compensation

Phase shift

$$\phi(\omega) = \phi(\omega_0) + D_1 \cdot (\omega - \omega_0) + \sum_{n=2}^{\infty} \frac{1}{n!} D_n (\omega - \omega_0)^n$$

 compressed pulse in CM with desired GD

 compressed pulse with compensated TOD

Conclusions

- The model of interaction of femtosecond laser pulses with chirped mirror is developed
- Developed model allows improving chirped mirror design with purpose of obtaining better reflected pulse quality.
- It was revealed the reflected pulse profile drawbacks caused by chirped mirror design imperfection and the way to eliminate it.