

Modelling methods for highindex contrast linear and nonlinear nanophotonics

P. Bienstman, B. Maes, P. Vandersteegen, R. Baets

Photonics Research Group

http://photonics.intec.ugent.be

• Eigenmode expansion for Kerr NL

Complex Jacobi for Kerr NL

RCWA for light extraction in OLEDs

Linear mode-expansion

Division of structure in longitudinally invariant sections

- Field in a section described by a superposition of local eigenmodes
- Mode amplitudes calculated using a scattering-matrix approach

$$\left(\overline{E}(\overline{r}), \overline{H}(\overline{r})\right) \leftrightarrow \overline{A} = \left[A_{i}\right]$$

Index depends on local field intensity

$$n = n_{linear} + n_{Kerr} I$$

Grid + iteration of linear simulations

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Characteristics of method

Flexibility :

- Generic 2D structures: finite AND infinite
- Saturable Kerr, absorption, ...

Rigorous

Bidirectional ↔ standard BPM

Efficiency

- Linear parts need only one calculation
- Small non-linear sections
- CW-solutions
 - $\leftrightarrow \mathsf{FDTD:} \mathsf{ long pulses}$
- Adaptive grid straightforward
 - ↔ FDTD: boundary difficulties

Resonator next to waveguide

Concept of the 2D gap soliton

Frequency in band gap

• Linear:

Without defects \rightarrow Exponential dampening

With defects \rightarrow Waveguide

• Kerr nonlinear:

Field creates its own defect

 \rightarrow Gap soliton

Iterative eigenmode expansion

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Regular PhC

Diatomic PhC

UNIVERSITEIT GENT

n_{Kerr}>0

n_{Kerr}<0

On-site

Inter-site

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

imec

• Eigenmode expansion for Kerr NL

• Complex Jacobi for Kerr NL

• RCWA for light extraction in OLEDs

Complex Jacobi Iteration

- promising new numerical method
- proposed by R. Hadley in 2004
- frequency domain solver
- finite differences
- iterative
- good performance, even in 3D

regular Jacobi iteration complex Jacobi iteration, C_1 and C_2 complex, $C_1 = -C_2^*$

G. Ronald Hadley, "A complex Jacobi iterative method for the indefinite Helmholtz equation", *Journal of Computational Physics*, 203 pp.358-370 (2005).

Non linear complex Jacobi

initial field =
$$e_{i,j}^{0}$$

 $e_{i,j}^{n+1} = e_{i,j}^{n} - C_1 \left(\delta_x^2 e + \delta_y^2 e + k_0^2 \varepsilon e \right)$
 $e_{i,j}^{n+1} = e_{i,j}^{n} - C_2 \left(\delta_x^2 e + \delta_y^2 e + k_0^2 \varepsilon e \right)$
 $n_{i,j}^{n} = n_{\text{linear}} + n_2 \text{abs}(e_{i,j}^{n})^2$

non-linear 1D resonator

Vertical grating coupler

Feedback + non linearity >> optical bistability? even symmetry breaking: switch ?

Collaboration Marc Haelterman (ULB)

n =
$$n_0 + n_2 abs(E)^2 (n_2 = 10^{-15} - 10^{-13} cm^2/V^2)$$

spot of 30 mW on 4 µm x 4 µm:
> 1.2e6 V/m

Transmission spectra

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

imec

Comparison EME and CJ

Eigenmode Expansion	Complex Jacobi
 + Fast, requires not many iterations + linear regions are calculated 	+ does allow non linearity in entire simulation space, extremely flexible
only once.	+ easy algorithm
- diverges for a smaller non	- not as fast as EME
linearity than CJ -depends on a grid in the non	 requires a grid in the entire simulation space
linear section (calculation of eigenmodes becomes a bottle neck)	- results are not as intuitive

• Eigenmode expansion for Kerr NL

• Complex Jacobi for Kerr NL

RCWA for light extraction in OLEDs

Light extraction from white OLEDs

imec

We want to model:

- spontaneous emission in organic stack
- influence of grating at OLED/glass interface in 3D
- influence of grating at glass/air interface in 3D

lateral structures: wavelength scale application: white light for lighting

Grating at glass-air interface perspective view: side view:

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

imec

- 1: calculate field profile emitted by OLED into the substrate
 - expand dipole in plane waves
 - interference in planar stack
- 2: bounce this field up and down in substrate
 - use RCWA to calculate grating scattering
 - use powers instead of amplitudes!

Influence of period

Influence of depth

grating	Extraction efficiency	Increase (compared with planar)
A CONTRACTOR OF THE PARTY OF TH	0.65-0.70	<u>+</u> 50%
	<u>+</u> 0.70	±50%

grating attached to 3 mm x 3 mm OLED with an optical contact fluid

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

• similar in principle to previous case

- but: use amplitudes instead of powers
- average over dipole position

Glass substrate

Extraction to air (at 565 nm)

• Eigenmode expansion for Kerr NL

Complex Jacobi for Kerr NL

RCWA for light extraction in OLEDs

Influence of fill factor

