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• FWM in micro-resonator

– wavelength conversion, optical switches, etc.
– in a nonlinear resonator: χ(3) enhanced by ~(FE)8

– challenging task, numerically & theoretically
– require accurate information on resonance field in complicated stru.
– strong material dispersion of semiconductors

• Full wave FDTD analysis
– accurate, but numerically expensive
– efficient parallel code
– detailed modeling capability

• Kerr nonlinearity
• material dispersion
• Effective Dielectric Const. (EDC) tech. for modeling curved surfaces

– first attempt to apply full wave analysis to FWM in actual devices
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FDTD analysis of 
nonlinear and dispersive media

Optical Kerr effect
polarization:

)(~
2

)(~)(~)(~
22

2
0 ω

ωωδω
ωεεωωχω E

j
EP

LL

LL
LL −+

Δ
==

)()()(2)( 2
02

2
2 tE

dt
tPd

dt
tdPtP LL

LL
LLL ωεεδω Δ=++

(3) 3
0( ) ( )K KP t E tε χ=

Φ-1

const. nonlinear susceptibility

finite difference eq.

solved in Yee's leapfrog algorithm
finite difference eq.

Lorentz dispersion
polarization:
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FDTD implementation of
Effective Dielectric Const. (EDC) Tech.

For E fields tangential
to the interface:
Tangential B.C.
(E is continuous)

εeff: arithmetic average

For E fields not being 
tangential to the 
interface: 
εeff: solve electrostatic
Laplace equation 

by FD method
( ) 0ε ϕ∇ ⋅ ∇ =

2nd-order accuracy is maintained!
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Modeling of 
InP/InGaAsP micro-resonator

Resonator structure (2D and 3D)

w=0.4

r=5

(unit: μm)

g1=0.15

g2=0.2

0.3
0.7
1.0

l=3 • substrate: InP
• computation region:
13.5x17.4 μm2,
for 3D;
hight = 2.7 μm

• InGaAsP:  n=3.42 
χ(3) = 3.8x1018 m2/V2

• InP: n=3.17(1.55 μm)
• for 2D analysis;
n=3.34 (slab wg.)

• quasi-TM pol.Δx=Δz=0.025, Δy=0.1μm



Modeling of 
InP/InGaAsP micro-resonator

Material dispersion of InGaAsP core

*S. Adachi, “Optical properties of In1-xGaxAsyP1-y alloys”, 
Phys. Rev. B, vol. 39, no. 17, pp. 12612–12621, 1989.

dielectric const. for
Q(1.35)-InGaAsP:

χ(3) = 3.8x1018 m2/V2

with  εinf = 10.05

Δε = 1.0
ωp = 1.948x1015 

rad/s
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Wavelength [nm]
1874 14991666 1363

*

reasonable fit
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Modeling of 
InP/InGaAsP micro-resonator

Linear pulse response analysis

2D 
3D+disp.

for pump for signalfor conv.

EDCno EDC meas.

pulse input (quasi-TM)

output

• EDC reduces stair-case
error (artificial loss)

2D 2D
+disp.

3D 3D
+disp.

13
%

4% 10% 1%

FSR error (FDTD vs. meas.)
FSR artificial

loss



Modeling of 
InP/InGaAsP micro-resonator

Nonlinear analysis (typical DFWM spectrum)

port 1
port 2

in the ring (port 5)

port 2
(port 
1)

converted 

pump

signal
calculation conditions:
• pump & signal input at p1
• 3D FDTD (max 18 ps)
• max pump field 
at center of waveguide:
Ep = 5.65x106 V/m
(=pump power 13 dBm)

• material dispersion
• no EDC

p1 p2

p3 p4

p5

pump & signal (-20 dB)
with EDC
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InP/InGaAsP micro-resonator
Field enhancement in resonator (q-TM E-field)

port 1

port 3

E-field [V/m]
pump & signal input

port 2

Note:
Field in the ring is much
stronger than that in the 
bus waveguides. 
FE ~ 2.4
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Comparison with measurements
Wavelength conversion efficiencies of FWM

converted
wave at p2 

signal
at p1η

FWM spectrum

2D&3D FDTD
+EDC

meas.

~7dB diff.

Results:
• 2D, 3D FDTD w/wo
disp. agree well.

• FDTD vs. meas.
~7dB difference
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Discussions
• Wavelength conversion efficiencies η of FWM

– 7dB difference of η between FDTD and measurement
– fabrication tolerance for coupling gap (20% wider)

g1~0.185 μm (nominal 0.15), g2~0.240 μm (nom.0.20)
– Incompletely etched residual in gaps
side view front view

significant reduction of η !

3D
analysis

incomplete 
etch in gaps

normal
gap

ring bus
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Discussions
• Computational resource

– 3D FDTD with 64 CPUs（U.Karlsruhe, HP XC-6000)
run time: 28 hours.
total memory: up to approx. 4GB

– 3D FDTD with 12 CPUs（Dell Poweredge cluster)
run time: 98 hours.

– 2D FDTD with 32 CPUs (with 3D code, XC-6000)
run time: approx. 150 min
total memory: up to approx. 500MB
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Conclusions
• 2D & 3D FDTD anlaysis of DFWM in micro-

resonator
– optical Kerr nonlinearity
– material dispersion:  Lorentz model incl.
– efficient stair-case roughness compensation

by EDC (Effective Dielectric Constant) Technique
– parallel computation allows efficient 3D analysis
– Results: 

7dB difference in conversion efficiency, mainly due 
to fabrication tolerance and incomplete etching in gap 
region

With full-wave FDTD analysis, it will be possible to 
show  what happens in an actual device, and then 
what to do next!
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